
www.manaraa.com

Using Index Structures for Anytime Stream Mining

Philipp Kranen
Supervised by Thomas Seidl

Data Management and Exploration Group
RWTH Aachen University, Germany

{kranen, seidl}@cs.rwth-aachen.de

ABSTRACT
Stream data mining has gained a lot of attention over the
last years due to an abundance of streaming data in profes-
sional as well as personal applications. Solutions have been
proposed for many mining tasks such as clustering, classi-
fication, frequent item set mining and aggregation. Stream
mining is especially challenging due to the large (usually
endless) amount of data and the time constraints posed by
the stream’s arrival rate. We recently presented an index-
based solution for anytime stream classification that handles
both large amounts of data and arbitrary arrival times. In
this paper we present our ongoing work, wherein we inves-
tigate bulk loading strategies to improve the classification
accuracy w.r.t. anytime constraints. We show promising
results and discuss future challenges related to index-based
classification on data streams. Furthermore we discuss ex-
tensions of our technique to other data mining tasks.

1. INTRODUCTION
Data streams are ubiquitous. An abundance of streaming

data emerges from numerous applications such as machine
monitoring, health monitoring, sensor networks, speech recog-
nition, network protocols, customer transaction data, and so
forth. The nature of the streams differs and can generally
be divided into constant streams, where the time between
two consecutive stream data items is constant, and varying
streams, where the amount of data per time unit is varying.

Mining on data streams has been extensively researched
over the past years. Algorithms have been developed or
adapted in many mining areas such as clustering [1, 2], clas-
sification [3], frequent item set mining [15] and aggregation
[17]. New research areas such as concept drift detection
evolved from stream data mining due to the additional time
component. The time however poses another challenge to
stream mining algorithms since the processing time is lim-
ited by the interval between two consecutive stream data
items. This problem has been tackled by two different ap-
proaches: budget algorithms and anytime algorithms.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Budget algorithms use a fixed (budgeted) time limit for
their calculation. They can neither provide a result in less
time nor exploit additional time to improve their result.
Anytime algorithms provide a result at any time of inter-
ruption and improve its quality with more time allowance.
Anytime algorithms are an active field of research, e.g. in
clustering [22], top k processing [4] and anytime learning
of classifiers [23]. Many anytime classifiers have been pro-
posed, e.g. for support vector machines [7], decision trees
[9], nearest neighbor classifiers [20] and Bayes classifiers [24].

A second issue when dealing with classification on data
streams is related to the training of a classifier. In many
applications like machine monitoring or health monitoring
there is constantly new training data available. This data
may result from supervised hospital situations or monitor-
ing applications where an expert sporadically classifies the
current status manually. To apply a classifier consistently
in a stream scenario it is therefore important to be able to
learn from new training data incrementally and in an online
fashion. Especially in the light of evolving data the model
of a classifier has to be updated using new training data.

Recently we proposed a novel anytime classifier that we
called Bayes tree [16]. It is capable of classifying objects
with arbitrary time allowance and can learn from new train-
ing data incrementally and online. The Bayes tree is essen-
tially an index structure that stores a hierarchy of Gaussian
mixture models to enable anytime Bayesian classification.
We showed its performance in various stream scenarios on
benchmark data sets in [16] and applied our technique in a
health monitoring application [13].

To improve the anytime classification performance of the
Bayes tree we investigate bulk loading techniques from dif-
ferent perspectives. Since our classifier is based on the sta-
tistical Bayes approach, we investigate statistical methods to
approximate a given Gaussian mixture model with a coarser
mixture representation. Furthermore we evaluate machine
learning concepts based on clustering methods and compare
those techniques against traditional bulk loading algorithms
from the literature. We achieved promising results that we
will present in this paper.

Our goal in [16] was to enable anytime Bayesian classi-
fication by the means of hierarchical index structures. We
recapitulate the Bayes tree in the next section. Our next
goal is the improvement of its performance. We present
ongoing work and results in Section 3 and describe further
steps in Section 4.1. The third goal is the extension of our
technique to other data mining tasks, ideas and approaches
are discussed in Section 4.2.

www.manaraa.com

2. THE BAYES TREE
We first briefly review Bayesian classification and density

estimation in Section 2.1 and then describe the structure
and working of the Bayes tree.

2.1 Preliminaries
Given a set C of classes, a classifier is a function G which

maps an object x to a label ci ∈ C. In our work, we focus
on the Bayesian classifier which uses the statistical Bayesian
decision theory for classifying objects. Based on a statistical
model of the class labels, the Bayes classifier chooses the
class with the highest posterior probability P (ci|x) for a
given query object x according to the Bayes rule, i.e.

GBayes(x) = argmax
ci∈C

{P (ci|x)} = argmax
ci∈C

{P (ci) · p(x|ci)}

Note that p(x) is left out in the last term, because it does
not affect the argmax evaluation. With Dci = {(xj , yj) ∈
D | ci = yj} as the set of objects belonging to a specific class
ci, the a priori probability P (ci) can be easily estimated
from the training data set D as the relative frequency of each

class P (ci) =
|Dci

|
|D| . Since x is typically multidimensional,

the task of estimating the class-conditional density p(x|ci)
is not trivial.

A simple method is to assume a certain distribution of
the data. Any model assumption (e.g. a single multivari-
ate normal distribution) may not reflect the true distribu-
tion. Mixture densities relax this assumption that the data
follows exactly one unimodal model by assuming that the
data follows a combination of probability density functions.
In our work we use Gaussian mixture densities p(x|ci) =∑k
j=1 wj ·g(x, µj , σj), where µj is the mean of the j-th Gaus-

sian component, wj its weight and σj its variance vector.
Another approach to density estimation are kernel den-

sities, which do not make any assumption about the un-
derlying data distribution (thus often termed “model-free”
or “non-parameterized” density-estimation). Kernel estima-
tors can be seen as influence functions centered at each data
object. Thus, the class conditional probability density for
any object x is the weighted sum of kernel influences of
all objects xj of the respective class. We use the Gaus-

sian kernel KGauss(x) = 1

(2·π)d/2 e
− x2

2hi along with Gaussian

mixture models in a consistent model hierarchy to support
mixing of models and kernels in the Bayes tree. In terms of
classification accuracy, Bayes classifiers using kernel estima-
tors have shown to perform well for traditional classification
tasks. Especially for huge training data sets the estimation
error using kernel densities is known to be very low and
even asymptotically optimal. To set the bandwidth hi for
our d-dimensional kernel estimators we use a common data
independent method according to [18].

2.2 Structure, descent and query processing
Our goal in [16] was to enable anytime kernel density es-

timation for efficient and interruptible classification. Index-
ing provides means for efficiency in similarity search and
retrieval. By grouping similar data on hard disk and pro-
viding directory information on disk page entries, only the
relevant parts of the data are accessed during query process-
ing. In the Bayes tree, the data objects are stored at leaf
level as in similarity search applications. As classification
requires reading all kernel estimators of the entire model,

a)

K K K K K K K K K KK K K KK K K

b)

c)

Figure 1: a) Bayes tree and frontier. b) The re-
sulting mixture model. c) The underlying R-tree
structure.

accuracy would be lost if a subset of all kernel densities
was ignored. Consequently, there is no irrelevant data, and
hence the pruning as in similarity search is infeasible when
dealing with density estimation. The Bayes tree solves this
problem by storing aggregated statistical information in its
inner nodes.

The general idea of the Bayes tree is a hierarchy of mix-
ture densities stored in a multidimensional index. Each level
of the tree stores at a different granularity a complete model
of the entire data. To this end, a balanced structure as in
R-trees [11] is used to store the kernels at leaf level. The
directory on top is built in a bottom-up fashion, providing
a hierarchy of node entries, each of which is a Gaussian that
represents the entire subtree below it. To derive the mixture
models we store the necessary information to compute pa-
rameters of the mixture densities, i.e. the mean and variance
of the Gaussians, in the entries.

Definition 1. Bayes tree node entry.

A subtree Ts of a d-dimensional Bayes tree is associated with
the set of objects stored in the leaves of the subtree: Ts =
{t(s,1), . . . , t(s,ns)}. An entry es then stores the following
information about the subtree Ts:

• The minimum bounding rectangle enclosing the objects
stored in the subtree Ts as MBRs = ((l1, u1), . . . , (ld, ud))

• A pointer ptrs to the subtree Ts

• The cluster feature CF = (ns, LS, SS) of the objects in
Ts containing the number ns of objects, their linear sum LS
and their squared sum SS

Please note that all objects stored in the leaves of the
Bayes tree are d-dimensional kernels. The mean µs and
the variance vector σ2

s for a subtree Ts can be computed
from the stored values of the respective node entry es as
µs = LS/ns and σ2

s = SS/ns − (LS/ns)
2. Our Bayes tree

extends the R*-tree to store model specific information in
the following manner:

Definition 2. Bayes tree.

A Bayes tree with fanout parameters m,M and leaf node
capacity parameters l,L is a balanced multidimensional in-
dexing structure. Each inner node nodes contains between

www.manaraa.com

m and M entries (see Def. 1). The root has at least a sin-
gle entry and each inner node with νs entries has exactly νs
child nodes. Leaf nodes store between l and L observations
(d-dimensional kernels). A path from the root to any leaf
node has always the same length (balanced).

Answering a probability density query requires a complete
model as stored at each level of the tree. Besides these full
models, local refinement of the model (to adapt flexibly to
the query) provides models composed of coarser and finer
representations. This is illustrated in Figure 1b. In any
model, each component corresponds to an entry that repre-
sents its subtree. This entry may be replaced by the entries
in its child node yielding a finer representation of its subtree.
This idea leads to query-based refinement in our anytime
algorithm. Each mixed granularity model corresponds to a
frontier in the tree, i.e. a set of entries in the tree, such that
each kernel estimator is represented exactly once. Figure
1 b) shows the resulting mixture density for the example
frontier from part a). The leftmost Gaussian stems from
the entry e1 which is located at root level. The rightmost
Gaussian and the one in the back correspond to entries e23
and e21 respectively, the remaining represent kernel densi-
ties at leaf level. Part c) of the image depicts the underlying
R*-tree MBRs and the kernels as dots. The bigger blue dot
and the vertical line represent the query object from which
the above frontier originated.

Recall that an entry es represents all objects in its cor-
responding subtree by storing the necessary information to
calculate its mean and variance. Hence, a set E = {ei} of
entries defines a Gaussian mixture model, which can then
be used to answer a probability density query.

Definition 3. Probability density query pdq.

Let E = {ei} be a set of entries, ME the corresponding
Gaussian mixture model and n =

∑
i nei the total number

of objects represented by E. A probability density query pdq
returns the density for an object x with respect to ME by

pdq(x, E) =
∑
es∈E

nes

n
· g(x, µes , σes)

where µes and σes are calculated as described above. For a
leaf entry a kernel estimator as discussed in Section 2.1 is
used and obviously µes is the object itself.

From time step t to t+ 1, the set of entries in the frontier
changes by adding all entries in the child node nodes of one
frontier entry es ∈ E. If nodes has νs entries, then the
frontier’s entry set Et changes to Et+1 by

Et+1 = (Et \ {es}) ∪ {es◦1, . . . , es◦νs}

i.e. es is replaced by its children. The probability density
for x in time step t + 1 is calculated taking the probability
density for x in time step t, subtracting the contribution of
the refined entry’s Gaussian and adding the contributions of
its children’s Gaussians. Hence, the cost for calculating the
new probability density for x after reading one additional
node is very low due to the information stored for mean and
variance.

For tree traversal we evaluated three basic descent strate-
gies: breadth first (bft), depth first (dft) and global best
descent (glo), which orders nodes globally with respect to a
priority measure and refines nodes in this ordering. For the

priority measure we tested a geometric measure, i.e. the dis-
tance from the query object to the MBR, and a probabilistic
measure, i.e. the weighted probability density for the query
object w.r.t. the Gaussian component of each entry.

One Bayes tree is built per class, therefore we proposed
several improvement strategies to decide which tree has the
right to refine its model in the next time step. Through ex-
tensive experiments we found that refining the k most proba-
ble classes (qbk) in turns yielded the best results throughout.
k = min{2, blog(m)c}, where m is the number of classes,
showed the best performance on all tested data sets. For
more details please refer to [16].

3. BULK LOADING THE BAYES TREE
Our goal in ongoing work is to improve the performance

of the Bayes tree. We therefore investigate bulk loading
approaches, which we describe in the next Section. Prelim-
inary results are presented in Section 3.2.

3.1 Approaches
Since the Bayes tree is a statistical approach to classifi-

cation we looked for statistical methods to create a smaller
mixture model from a given mixture model. Starting bottom
up with a mixture model that contains a kernel estimator for
each training set item we create successively coarser models
that represent good approximations. We adapted two ap-
proaches, a virtual sampling approach described in [21] and
a second approach described in [10]. We will describe our
approach based on [10], called Goldberger in the following,
since it outperformed the first approach.

The Goldberger approach assumes two initial mixture mod-
els f and g to be given, where f is the finer model with r
components and g an approximation with s components,
hence r > s. Each component is assigned a weight and is
specified by its mean and covariance matrix. To measure
the quality of the approximation [10] defines the distance
between two mixture densities as follows:

Definition 4. Let f =
∑r
i=1 αifi and g =

∑s
j=1 βjgj be

two mixture densities containing r and s Gaussian compo-
nents fi and gj with their respective weights αi and βj. The
distance between f and g is then defined using the Kullback-
Leibler divergence KL [6] as follows

d(f, g) =

r∑
i=1

αi ·
s

min
j=1
{KL(fi, gj)}

The optimal mixture model ĝ reducing f to s components
is ĝ = arg ming(d(f, g)). Since there is no closed form to
compute ĝ, a local optimum is computed iterating the fol-
lowing two steps until the distance d(f, g) does no longer
decrease. Therein π(i) : {1 . . . r} → {1 . . . s} is a mapping
function that assigns each component in f to a component
in g.

1. regroup - update π: π(i) = arg minsj=1{KL(fi, gj)}

2. refit - for each component gj recompute weight βj ,
mean µj and covariance matrix Σj as follows

• βj =
∑
i,π(i)=j αi

• µj = 1
βj

∑
i,π(i)=j αiµi

• Σj = 1
βj

∑
i,π(i)=j αi

(
Σj + (µi − µj)2

)

www.manaraa.com

We devise a bulk loading technique based on [10] as fol-
lows. To initialize the mixture g we compute a first mapping
π0 by assigning 0.75 ·M components from f to one compo-
nent in g according to the z-curve order of their mean values.
M is given through the fanout, which in turn is dictated by
the page size.

The components gj are converted to Bayes tree nodes con-
taining the entries fi with π(i) = j. Since the final π might
map more than M components from f to a single compo-
nent in g, we investigated several strategies to restrict the
fanout to the given boundaries. First we reformulated the
regroup step into an integer linear program with constraints
regarding the resulting fanout. However, for realistic prob-
lem sizes, this approach took way too long to compute a
complete bulk loading. Hence, we decided for a post pro-
cessing after the mapping π was computed, which splits the
nodes that contain too many entries. Therefore two rep-
resentatives are computed by moving the mean along the
dimension with the highest variance by an ε in both direc-
tion. A Gaussian is placed over the two representatives and
the mapping of the entries to the representatives is com-
puted as in the regroup step. If a node contains too few
entries it is merged with the node closest to it in term of the
Kullback-Leibler divergence.

Besides the above mentioned bottom up approaches we
implemented a top down approach that recursively splits
the training set into several clusters. In contrast to the pre-
vious approach, where Gaussian components were merged
and mapped, we now operate solely on the data objects.
More precisely, we start by applying the EM [8] algorithm
to the complete training set. The desired number M of re-
sulting clusters is always set to the fanout which is again
given through the page size. If the EM returns less than m
clusters, the biggest resulting cluster is split again such that
the total number of resulting clusters is at most M . In the
rare case that the EM returns a single cluster, this cluster
is split by picking the two farthest elements and assigning
the remaining elements to the closest of the two. Finally, if
a resulting cluster contains more than L objects (the capac-
ity of a leaf node), the cluster is recursively split using the
procedure described above. Otherwise the items contained
in that cluster are stored in a leaf node, its corresponding
entry is calculated and returned to build the Bayes tree.
The EM approach may result in an unbalanced tree, which
differs from the primary Bayes tree idea. However, as we
will see in the next section, the results show that this is not
a drawback but even leads to better anytime classification
performance.

Finally we employed traditional R-tree bulk loading algo-
rithms, i.e. we implemented space filling curves like Hilbert
curve or z-curve and other partitioning approaches, e.g. sort-
tile-recursive [14]. We briefly describe the Hilbert curve ap-
proach since we will present its results in the next section.
The bulk loading according to the Hilbert curve is a bot-
tom up approach where in the first step the Hilbert value
for each training set item is calculated. Next the items are
ordered according to their Hilbert value and put into leaf
nodes w.r.t. the page size. After that the corresponding
entry for each resulting node is created, i.e. MBR, cluster
features (CF) and the pointer. These steps are repeated us-
ing the mean vectors as representatives until all entries fit
into one node, the root node.

0,88

0,9

0,92

0,94

0,96

0,98

1

ac
cu
ra
cy

Pendigits

EMTopDown

Hilbert

Goldberger

Iterativ

0,84

0,86

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

nodes

Figure 2: Anytime classification accuracy on pendig-
its using different bulk loading approaches.

3.2 Results
The data sets that were used in the evaluation are summa-

rized in Table 1. We performed 4-fold cross validation and
show the classification accuracy after each node averaged
over the four folds. We used global best descent and the
qbk improvement strategy as they showed the best results
in [16] (cf. Section 2.2). The three proposed bulk loading
techniques are compared to the previous results from [16]
(called Iterativ in the graphs).

Figure 2 shows the results for the pendigits data set. The
Goldberger approach fails to improve the accuracy over the
iterative insertion for the first 50 nodes. After that it per-
forms slightly better, but cannot increase the accuracy more
than 1%. The curve corresponding to the Hilbert bulkload
shows a steep increase similar to the iterative insertion and
shows better performance in most cases. The EMTopDown
bulkload outperforms all other approaches and improves the
accuracy over the iterative insertion constantly by 3% or
more on this data set.

The performance of the Goldberger bulkload stayed below
the iterative insertion in the majority of our experiments.
Just on the Letter data set it improved the accuracy for
larger time allowances. Figure 3 shows the results on Let-
ter. For the first 40 nodes Goldberger and Iterativ perform
equally well, after that the accuracy of Iterativ stays be-
hind that of Goldberger. While the Hilbert bulkload shows
similar performance to Iterativ, the EMTopDown again con-
stantly yields the best accuracy up to 13% better than the
iterative insertion.

Figure 4 shows the results for the gender and covertype
data sets. For readability the results for the Goldberger
approach are left out. As stated above, its performance
was below that of the iterative insertion. For both data
sets k = 2 for the qbk improvement strategy (cf. Section
2.2). The graphs for EMTopDown and Hilbert using the
global best descent (glo) show an oscillating behavior on
both data sets. For comparison we recapitulated the breadth
first traversal (bft), the results are plotted as well. As was

name size classes features ref.

Pendigits 10,992 10 16 [12]

Letter 20,000 26 16 [12]

Gender 189,961 2 9 [19]

Covertype 581,012 7 10 [12]

Table 1: Data sets used in our experiments.

www.manaraa.com

0,9

ur
ac
y

Letter

0,85
ac
cu

0,8

0 7

0,75 EMTopDown

Hilbert

Goldberger

0,65

0,7
Iterativ

0,6

,

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

nodes

Figure 3: Anytime classification accuracy on letter.

found in [16], the global best descent performs better than
breadth first traversal. However, the graphs for bft do not
show the oscillating behavior mentioned above. While the
reason for the oscillation has to be investigated in further
research it does not affect the superiority of the bulk loading
over the iterative insertion.

In general the EMTopDown shows the best results in
terms of anytime classification accuracy on all tested data
sets and continuously improves the accuracy over that of the
previous results in [16] up to 13%. This proves the effective-
ness of bulk loading for our hierarchical anytime classifier.

4. FUTURE WORK
The general performance of our anytime classification ap-

proach from [16] and the promising results presented in the
last section motivate further research and application of our
technique. Our goals are first to further explore and im-
prove anytime classification using index structures (cf. Sec.
4.1) and second to extend our approach and exploit index
structures for other data mining tasks (cf. Sec. 4.2).

4.1 Next challenges in anytime classification
For the Bayes tree in its current version there is a num-

ber of options we plan to investigate. One option is the
use of different kernels, e.g. Epanechnikov kernels instead
of Gaussian kernels, to test their performance but also the
robustness of our general approach. The benefit of employ-
ing covariances, i.e. skipping the independence assumption,
will be evaluated as well. Moreover, a modification of the
Bayes tree to enable its application on data sets containing
(or consisting of) categorical data is a further challenge.

A structural modification we are currently investigating
regards the separation of the training data according to the
class label. So far we build one Bayes tree per class. Now
we investigate storing the complete training data in a single
Bayes tree and modifying the entry structure such that in-
formation about the individual classes can still be obtained.
Note that the number of classes does not impose an overhead
(cf. qbk strategy), since each read node yields an improve-
ment independent of the number of trees. However, the
modification yields a parallel refinement of several classes
in a single descent and therefore can speed up the improve-
ment. Combining multiple classes in a tree poses several
interesting questions: is the descent decision still based en-
tirely on the probability density or is it favorable to include
the class distribution into the decision, e.g. through the en-
tropy of the current entries? How is the qbk strategy best

0,75

0,8

0,85

ac
cu
ra
cy

Gender

EMTopDown glo

0,6

0,65

0,7

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

nodes

p g

EMTopDown bft

Hilbert glo

Hilbert bft

Iterativ glo

0,85

ac
y

Covertype

0,8ac
cu
ra

0,75
EMTopDown glo

0,7

EMTopDown bft

Hilbert glo

Hilbert bft

0,65

Hilbert bft

Iterativ glo

0,6

0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 00 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

nodes

Figure 4: Anytime classification accuracy on gender
(top) and covertype (bottom).

adapted to the new structure, i.e. are the k best entries cho-
sen w.r.t. to the posterior probability or are the frequency
counts for the different classes taken into account? What is
the best trade-off between entry size and classification accu-
racy, i.e. do we store variances/covariances per class in each
node or is variance pooling also a good option? This struc-
tural modification also motivates research in the direction
of multi-label classification and semi-supervised learning.

Finally we want to investigate further application sce-
narios. We applied the Bayes tree in health monitoring
[13], where we exploited its hierarchical structure to per-
form multi-step classification. More precisely, we used the
upper levels of the trained Bayes trees for pre-classification
on mobile devices with restricted resources. Based on the
pre-classification the mobile devices sent more or less data
to a central server, yielding a varying data stream. On the
server the unrestricted Bayes tree was used for full classifi-
cation and triggered an optional detail request to the mobile
devices. We plan to extend this research in multi-step clas-
sification, but also elaborate the usage of our approach to
other streaming applications, e.g. in sensor networks.

4.2 Extension to other data mining tasks
Besides further research on stream data classification we

plan to extend our Bayes tree approach and use index struc-
tures for other stream data mining tasks, especially with
respect to anytime constraints. A major research direction
will be unsupervised learning (stream clustering) in the light
of evolving data distributions.

We plan to use our Bayes tree to generate a hierarchical
clustering on data streams. In particular the nice properties
of the stored cluster features (CF) allow several approaches
to modeling and tracking evolving data distributions. Ex-
ploiting their temporal multiplicity [2] for example we can
decrease the influence of older data in the current representa-

www.manaraa.com

tion by an exponential decay function. Moreover, this allows
to reuse node entries if their contribution is too insignificant
due to their age. As a consequence, we can maintain an
up-to-date view on the data distribution in constant space.
The additivity property of the CF [2] allows the comparison
of data distributions from arbitrary points in time. Apply-
ing a pyramidal time frame as in [1] guarantees a moderate
memory consumption even for long running applications.

Through the hierarchical nature of the Bayes tree as an
index structure we can insert new objects in logarithmic
time and hence can maintain a finer cluster representation
than previous approaches in the same time. Moreover, using
these fine grained CF representation we can find clusters
of arbitrary shape by using density based clustering in an
offline component as in [5].

A promising research direction in using index structures
for anytime stream mining is the extension of the Bayes
tree to enable anytime clustering. This can be achieved
by modifying the entry structure such that we can ”park”
insertion objects in inner nodes and take them along in a
later descent. Another great benefit of this modification is
the property of self-adaptation. More precisely, the size of
the tree will automatically adapt itself to the stream speed
since insertion objects will descent as far as time permits,
be parked there and hence no further splits occur.

Further topics include the detection of outliers, handling
of missing values and the investigation of a subspace variant
of the Bayes tree. In general we believe that the effective us-
age of index structures for stream data mining as described
in [16, 13] and Section 3 can be successfully extended.

5. CONCLUSION
We have presented and applied a novel index-based any-

time classifier (Bayes tree) in recent work constituting our
first goal in enabling anytime Bayesian classification. Our
next goal is the improvement of its performance. To this
end we presented ongoing work in this paper wherein we im-
proved the anytime classification accuracy up to 13% through
different bulk loading approaches. Moreover, we have laid
out various further research aspects regarding index-based
stream classification. The third goal is the extension of our
technique to other data mining tasks. Hereto we identified
approaches to use index structures for modeling evolving
data streams or even for anytime clustering.

Acknowledgments
This work has been supported by the UMIC Research Cen-
tre, RWTH Aachen University.

6. REFERENCES
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A

framework for clustering evolving data streams. In
29th VLDB, 2003.

[2] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A
framework for projected clustering of high dimensional
data streams. In 30th VLDB, 2004.

[3] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. On
demand classification of data streams. In 10th ACM
KDD, pages 503–508, 2004.

[4] B. Arai, G. Das, D. Gunopulos, and N. Koudas.
Anytime measures for top-k algorithms. In 33rd
VLDB, 2007.

[5] F. Cao, M. Ester, W. Qian, and A. Zhou.
Density-based clustering over an evolving data stream
with noise. In SDM, 2006.

[6] J.-Y. Chen, J. Hershey, P. Olsen, and E. Yashchin.
Accelerated monte carlo for kullback-leibler divergence
between gaussian mixture models. In ICASSP, 2008.

[7] D. DeCoste. Anytime interval-valued outputs for
kernel machines: Fast support vector machine
classification via distance geometry. In ICML, 2002.

[8] A. P. Dempster, N. M. L. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society,
Series B, 39(1):1–38, 1977.

[9] S. Esmeir and S. Markovitch. Anytime induction of
decision trees: An iterative improvement approach. In
21st AAAI, 2006.

[10] J. Goldberger and S. T. Roweis. Hierarchical
clustering of a mixture model. In NIPS, 2004.

[11] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, pages 47–57, 1984.

[12] S. Hettich and S. Bay. The UCI KDD archive
http://kdd.ics.uci.edu, 1999.

[13] P. Kranen, D. Kensche, S. Kim, N. Zimmermann,
E. Müller, C. Quix, X. Li, T. Gries, T. Seidl,
M. Jarke, and S. Leonhardt. Mobile mining and
information management in healthnet scenarios. In 9th
IEEE MDM, 2008.

[14] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez.
Str: A simple and efficient algorithm for r-tree
packing. In ICDE, pages 497–506, 1997.

[15] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In 28th VLDB, 2002.

[16] T. Seidl, I. Assent, P. Kranen, R. Krieger, and
J. Herrmann. Indexing density models for incremental
learning and anytime classification on data streams. In
12th EDBT/ICDT, 2009.

[17] A. Silberstein, A. Gelfand, K. Munagala, G. Puggioni,
and J. Yang. Suppressions and failures in sensor data:
A bayesian approach. In 33rd VLDB, 2007.

[18] B. Silverman. Density Estimation for Statistics and
Data Analysis. 1986.

[19] P. Stone and D. Andre. Physiological data modeling
contest (ICML-2004): http://www.cs.utexas.edu/
users/pstone/workshops /2004icml/, 2004.

[20] K. Ueno, X. Xi, E. J. Keogh, and D.-J. Lee. Anytime
classification using the nearest neighbor algorithm
with applications to stream mining. In ICDM, 2006.

[21] N. Vasconcelos and A. Lippman. Learning mixture
hierarchies. In NIPS, pages 606–612, 1998.

[22] M. Vlachos, J. Lin, E. J. Keogh, and D. Gunopulos. A
wavelet-based anytime algorithm for k-means
clustering of time series. In Workshop on Clustering
High Dimensionality Data and Its Applications, 2003.

[23] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining
concept-drifting data streams using ensemble
classifiers. In 9th ACM KDD, 2003.

[24] Y. Yang, G. I. Webb, K. B. Korb, and K. M. Ting.
Classifying under computational resource constraints:
anytime classification using probabilistic estimators.
Machine Learning, 69(1), 2007.

